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Introduction

Fitting a Gaussian Process (GP) is slow for big data ( Σ−1, |Σ| ).
Basis function models efficiently approximate the GP [1].

To approximate a stationary process and remove undesirable artifacts, computationally

expensive basis function normalization is needed.

We propose two fast methods for this normalization, and implement them within the

LatticeKrig R package [3].

0

1

2

0.00 0.25 0.50 0.75 1.00

f(s
)

−0.050

−0.025

0.000

0.025

0.050

0.00 0.25 0.50 0.75 1.00

s

f(s
i+

1)
−

f(s
i)

Fit

Normalized
Unnormalized

LatticeKrig Spatial Model

The LatticeKrig framework [2] introduces sparsity into key matrices to allow for a large number of

basis functions:

Basis function model for spatial observations Z at 2-d locations s:

Z(s) = x(s)>β + g(s) + ε(s), where g(s) =
R∑

i=1
ciφi(s)

where x is a vector of covariates, β are linear coefficients, and ε is error.

g is a GP, approximated by the sum of R compact radial basis functions φ with random

coefficients c.

c follow SAR model, Bc = e, where B is sparse and e ∼ N (0, 1). This directly gives the sparse
precision matrix Q = BB>.

Direct prescription of Q = Σ−1 lets you avoid expensive GP operations.

Problem: Low basis function overlap (sparse) creates undesirable artifacts
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Slow Solution: Normalize functions to have constant marginal variance by performing φ∗
i (s) =

φi(s)/
√

Var(g(s)).

This is expensive! Let φs = [φ1(s) . . . φR(s)]T , then

Var(g(s)) = φT
s Σ φs = φT

s Q−1φs = φT
s (BBT )−1φs

Default method is exact: first computes sparse Cholesky Q = DDT , then solves Dv = φs,

whence

Var(g(s)) = ‖v‖2
2 =

∑R
i v2

i .

Two Fast Methods

FFT-based method is approximate: calculates variance on coarse grid n ≥ (2r − 1)2 where
R = r × r, then performs 2D-FFT upsampling to a finer grid N .

Reduces complexity from O(N 3) to O(n3 + N log(N)), where n < N .

FFT Zero Pad IFFT

Original Approximate Exact

Kronecker-based method is exact: further decomposes B using Kronecker products and

discretizes across two-dimensions:

B = (A ⊗ Ir + Ir ⊗ A) = (UDUT ⊗ Ir + Ir ⊗ UDUT ) = UDUT

where U is small, D is diagonal, and B−1 = UD−1UT

Reduces complexity to O(NR3/2).

Timing & Error

Basis function calculation timed for varying spatial locations N .
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Timing Comparison for 10,000 Basis Functions
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Error calculated by comparing FFT result (approximation) to the exact variance at each grid

location s.

Big Data Prediction Example

GP with Matern covariance and smoothness ν = 1 simulated on a 1153 × 1153, (N = 1, 329, 409) grid.
Training cases include missing 80% of the data at random (MAR) and missing three 100 × 100 pixel

regions (Blocks).
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Blocks MAR

MAE ↓ RMSPE ↓ Time (min) MAE ↓ RMSPE ↓ Time (min)

None 1.1672 1.6432 28.68 0.1983 0.2486 16.57

*FFT 1.0527 1.4735 78.82 0.2051 0.2570 45.08

Kronecker 1.0508 1.4712 111.49 0.2051 0.2570 57.90

Default 1.0508 1.4712 173.75 0.2051 0.2570 95.51

Table 1. 4 layers of basis functions used (R = 65, 844 total basis functions). *Kronecker is used at the

layer with the finest resolution.

Reducing (or Removing) Artifacts
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Remnants after FFT Normalization

FFT normalization removes 99% of artifacts, exact methods remove the artifacts completely.

Summary & FutureWork

Main Contributions:

We show that accelerated and approximate normalization methods are feasible in practice.

We provide software implementation of two such methods.

Future research directions could explore:

More advanced image upsampling algorithms.

Faster solvers of discretizations.

Other basis function forms more amenable to normalization.

Adaptation to irregular data with fast and local interpolation.

Source Code & Article

All code for figures, timing, and big data

experiments, along with a link to the

arXiv preprint of the paper, can be found
at this Github repository.
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