Basis for Change: Approximate Stationary Models for Large Spatial Data

Antony Sikorski Daniel McKenzie Douglas Nychka

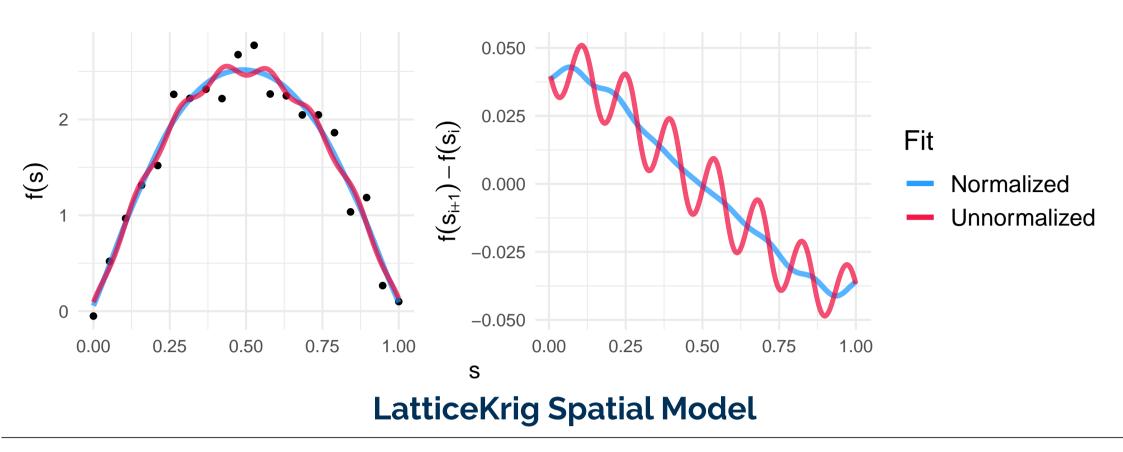
Department of Applied Mathematics and Statistics, Colorado School of Mines

Introduction

- Fitting a Gaussian Process (GP) is slow for big data (Σ^{-1} , $|\Sigma|$).
- Basis function models efficiently approximate the GP [1].

MINES

- To approximate a **stationary** process and remove **undesirable artifacts**, computationally expensive basis function normalization is needed.
- We propose two fast methods for this normalization, and implement them within the LatticeKrig R package [3].

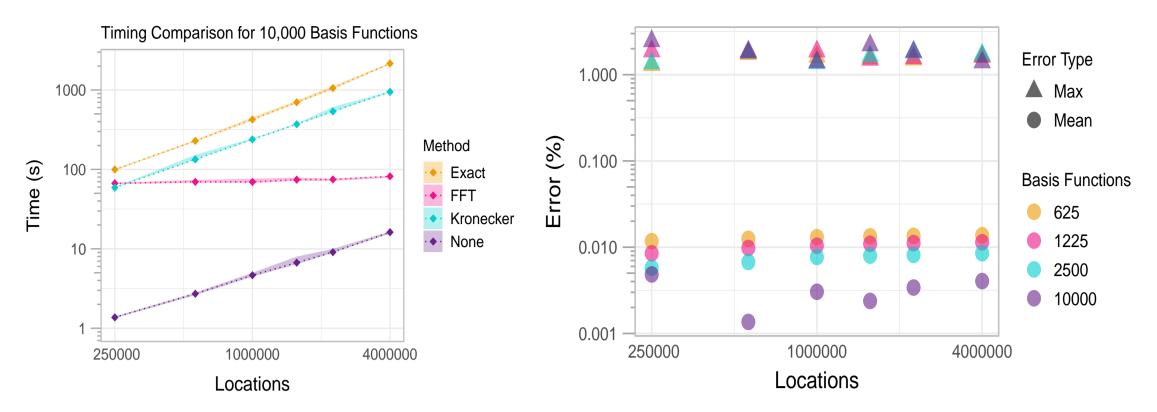


The LatticeKrig framework [2] introduces sparsity into key matrices to allow for a large number of basis functions:

Basis function model for spatial observations Z at 2-d locations s:

Timing & Error

Basis function calculation timed for varying spatial locations N.



Error calculated by comparing FFT result (approximation) to the exact variance at each grid location s.

Big Data Prediction Example

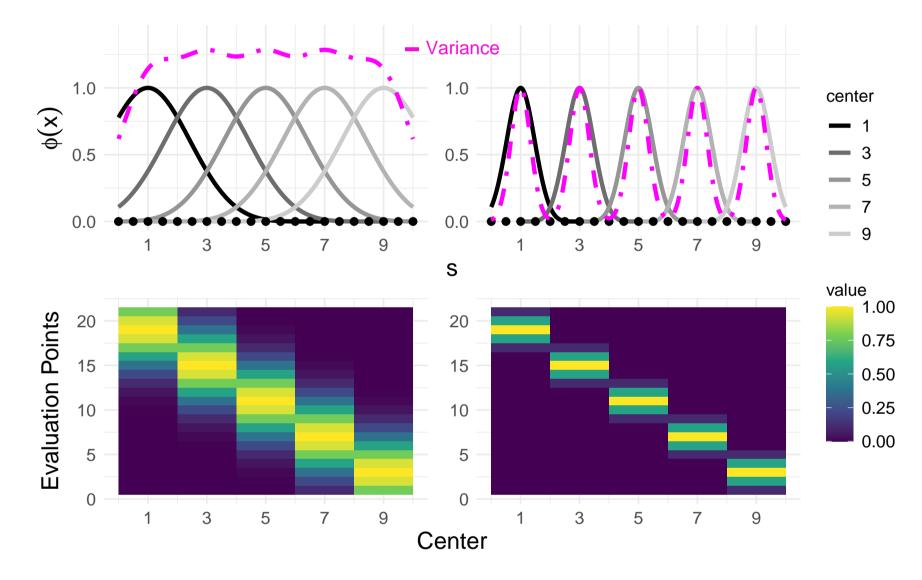
GP with Matern covariance and smoothness $\nu = 1$ simulated on a 1153×1153 , (N = 1, 329, 409) grid. Training cases include missing 80% of the data at random (MAR) and missing three 100×100 pixel regions (Blocks).

Train (Blocks)	Train (MAR)	True

$$Z(\mathbf{s}) = \mathbf{x}(\mathbf{s})^{\top} \boldsymbol{\beta} + g(\mathbf{s}) + \varepsilon(\mathbf{s}), \text{ where } g(\mathbf{s}) = \sum_{i=1}^{n} c_i \phi_i(\mathbf{s})$$

where x is a vector of covariates, β are linear coefficients, and ε is error.

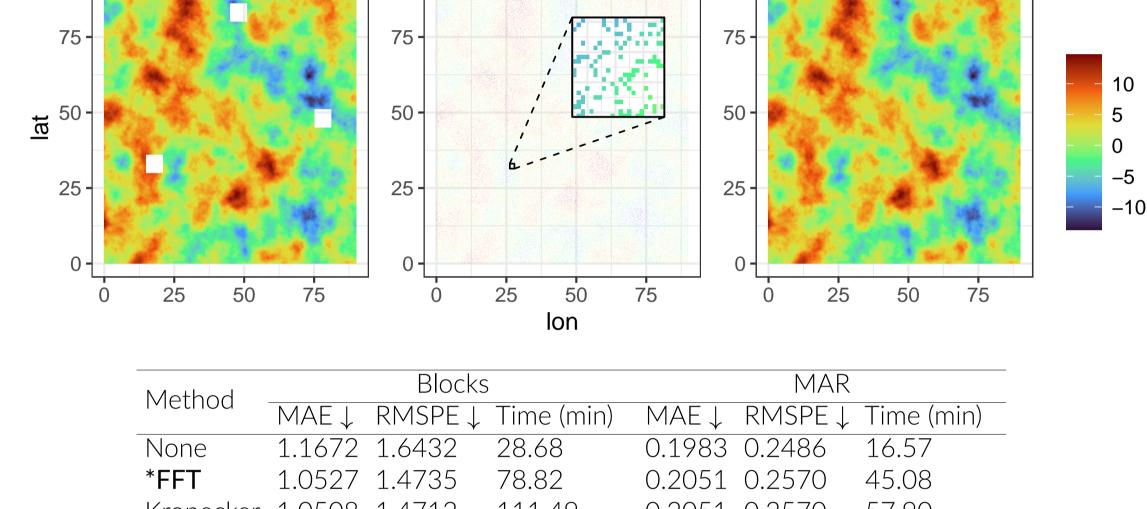
- g is a GP, approximated by the sum of R compact radial basis functions ϕ with random coefficients c.
- c follow SAR model, $B\mathbf{c} = \mathbf{e}$, where B is sparse and $\mathbf{e} \sim \mathcal{N}(0, 1)$. This directly gives the sparse precision matrix $Q = BB^{\top}$.
- Direct prescription of $Q = \Sigma^{-1}$ lets you avoid expensive GP operations.
- **Problem:** Low basis function overlap (sparse) creates undesirable artifacts



Slow Solution: Normalize functions to have constant marginal variance by performing $\phi_i^*(s) =$ $\phi_i(\boldsymbol{s})/\sqrt{\operatorname{Var}(g(\boldsymbol{s}))}.$

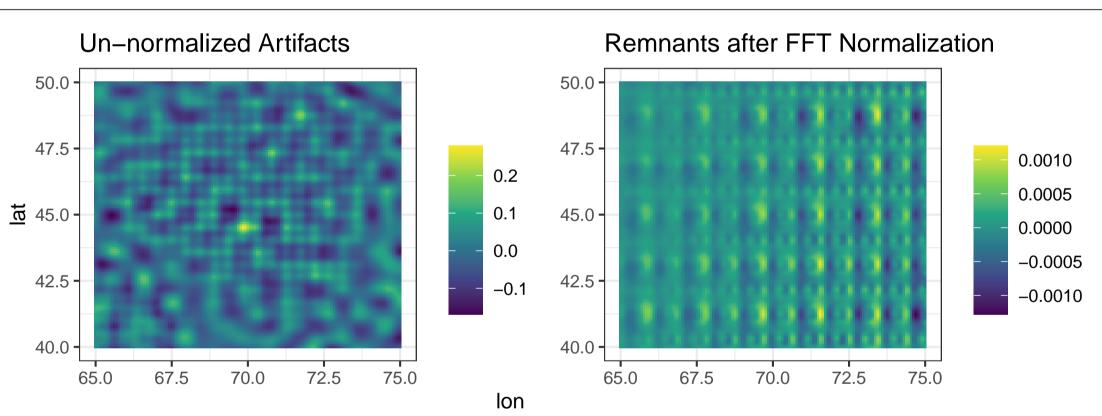
• This is expensive! Let $\boldsymbol{\phi}_{\boldsymbol{s}} = [\phi_1(\boldsymbol{s}) \dots \phi_R(\boldsymbol{s})]^T$, then

$$\operatorname{Var}(g(\boldsymbol{s})) = \boldsymbol{\phi}_{\boldsymbol{s}}^T \Sigma \, \boldsymbol{\phi}_{\boldsymbol{s}} = \boldsymbol{\phi}_{\boldsymbol{s}}^T Q^{-1} \boldsymbol{\phi}_{\boldsymbol{s}} = \boldsymbol{\phi}_{\boldsymbol{s}}^T (BB^T)^{-1} \boldsymbol{\phi}_{\boldsymbol{s}}$$



111.49 57.90 Kronecker 1.0508 1.4712 0.2051 0.2570 95.51 1.0508 1.4712 173.75 0.2051 0.2570 Default

Table 1. 4 layers of basis functions used (R = 65, 844 total basis functions). *Kronecker is used at the layer with the finest resolution.



Reducing (or Removing) Artifacts

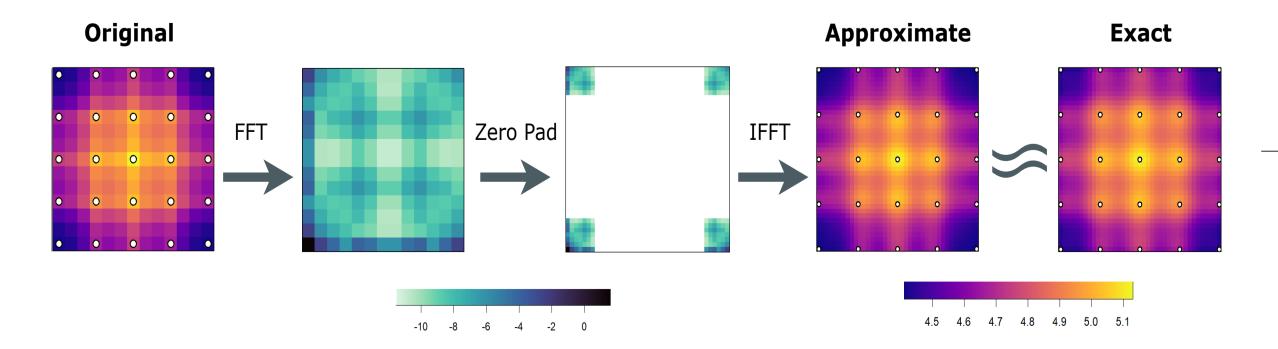
FFT normalization removes 99% of artifacts, exact methods remove the artifacts completely.

• Default method is **exact**: first computes sparse Cholesky $Q = DD^T$, then solves $D\mathbf{v} = \boldsymbol{\phi}_{\mathbf{s}}$, whence

 $\operatorname{Var}(g(\mathbf{s})) = \|\mathbf{v}\|_{2}^{2} = \sum_{i}^{R} v_{i}^{2}.$

Two Fast Methods

- **FFT**-based method is **approximate**: calculates variance on coarse grid $n \ge (2r 1)^2$ where $R = r \times r$, then performs 2D-FFT upsampling to a finer grid N.
- Reduces complexity from $\mathcal{O}(N^3)$ to $\mathcal{O}(n^3 + N\log(N))$, where n < N.



• **Kronecker**-based method is **exact**: further decomposes *B* using Kronecker products and discretizes across two-dimensions:

$$B = (A \otimes I_r + I_r \otimes A) = (UDU^T \otimes I_r + I_r \otimes UDU^T) = \mathcal{UDU}^T$$

where U is small, D is diagonal, and $B^{-1} = \mathcal{U}\mathcal{D}^{-1}\mathcal{U}^T$

• Reduces complexity to $\mathcal{O}(NR^{3/2})$.

Summary & Future Work

Main Contributions:

- We show that accelerated and approximate normalization methods are feasible in practice.
- We provide software implementation of two such methods.

Future research directions could explore:

- More advanced image upsampling algorithms.
- Faster solvers of discretizations.
- Other basis function forms more amenable to normalization.
- Adaptation to irregular data with fast and local interpolation.

Source Code & Article

All code for figures, timing, and big data experiments, along with a link to the arXiv preprint of the paper, can be found at this Github repository.

References

- [1] N. Cressie, M. Sainsbury-Dale, and A. Zammit-Mangion. Basis-function models in spatial statistics. Annual Review of Statistics and Its Application, 9:373–400, 2022.
- [2] D. Nychka et al. A multiresolution gaussian process model for the analysis of large spatial datasets. Journal of Computational and Graphical Statistics, 24(2):579-599, 2015.
- [3] D. Nychka, D. Hammerling, S. Sain, N. Lenssen, and M. D. Nychka. Package 'latticekrig', 2019.