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Introduction Timing & Error

+ Fitting a Gaussian Process (GP) is slow for big data ( £-L, [ ). Basis function calculation timed for varying spatial locations N.

= Basis function models efficiently approximate the GP [1]. Timing Comparison for 10,000 Basis Functions y
= To approximate a stationary process and remove undesirable artifacts, computationally o0 A A f A A ErorType
expensive basis function normalization is needed. 1000 e | A Max
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S Big Data Prediction Example

LatticeKrig Spatial Model

GP with Matern covariance and smoothness v = 1 simulated on a 1153 x 1153, (N = 1, 329, 409) grid.
Training cases include missing 80% of the data at random (MAR) and missing three 100 x 100 pixel

The LatticeKrig framework [2] introduces sparsity into key matrices to allow for a large number of _
regions (Blocks).

basis functions:

= Basis function model for spatial observations Z at 2-d locations s: Train (Blocks) Train (MAR)

R
Z(s)=x(s) B+ g(s) +e(s), where g(s) = Z ¢idi(s)

where x is a vector of covariates, B are linear coefficients, and ¢ is error.

- 5
= ¢ is a GP, approximated by the sum of R compact radial basis functions ¢ with random > 1 0
coefficients c. 5
= ¢ follow SAR model, Bc = e, where B is sparse and e ~ N(0, 1). This directly gives the sparse I -10
precision matrix Q = BB,
= Direct prescription of Q = X! lets you avoid expensive GP operations.
lon
= Problem: Low basis function overlap (sparse) creates undesirable artifacts
| Method Blocks MAR
s TS = e T Variance MAE | RMSPE | Time (min) MAE | RMSPE | Time (min)
1.0 1.0 () center None 1.1672 1.6432  28.68 0.1983 0.2486 1657
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. woe 1 3 5 - ‘ 9 ° Table 1. 4 layers of basis functions used (R = 65, 844 total basis functions). *Kronecker is used at the
S layer with the finest resolution.
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Var(g(s)) — ¢§Z ¢s — ¢£Q_1¢s — ¢Z<BBT>_1¢S

FFT normalization removes 99% of artifacts, exact methods remove the artifacts completely.

= Default method is exact: first computes sparse Cholesky Q = DD, then solves Dv = ¢, Summary & Future Work

whence
_ 2 _ N\, 2
Var(g(s)) = [Ivlly = 2.i vy Main Contributions:
Two Fast Methods = We show that accelergted and approxmate normalization methods are feasible in practice.
= We provide software implementation of two such methods.

= FFT-based method is approximate: calculates variance on coarse grid n > (2r — 1)* where Future research directions could explore:

R =r x r, then performs 2D-FFT upsampling to a finer grid V.
= Reduces complexity from O(N3) to O(n?® + Nlog(N)), where n < N. * More advanced image upsampling algorithms.

= [Faster solvers of discretizations.
o _ =  (Other basis function forms more amenable to normalization.
Original Approximate =  Adaptation to irregular data with fast and local interpolation.

Zero Pad Source Code & Article

All code for figures, timing, and big data
experiments, along with a link to the
arXiv preprint of the paper, can be found

o 8 s 4 2 o 45 46 47 48 49 50 51 at this Github repository.
= Kronecker-based method is exact: further decomposes B using Kronecker products and References

discretizes across two-dimensions:

B=(A&T + 1T A= (UDUT & .+ ] UDUTY = upuT [1]  N. Cressie, M. Sainsbury-Dale, and A. Zammit-Mangion. Basis-function models in spatial statistics. Annual Review of

( O+ 4@ ) ( Ot 4@ ) Statistics and Its Application, 9:373-400, 2022.
where U is small, D is diagonal, and B~ =uUD~U" [2] D. Nychka et al. A multiresolution gaussian process model for the analysis of large spatial datasets. Journal of
: 3/2 Computational and Graphical Statistics, 24(2):579-599, 2015.
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